C, PHP, VB, .NET

Дневникът на Филип Петров


* Задачата на Архимед за стадото

Публикувано на 19 декември 2010 в раздел Математика.

Задача 1. Това е много популярна диофантова задача, която казват, че е съставил лично Архимед. Задачата е открита през 1773г. от пергамент на гръцки език и решена чак през 1880г. от А. Амтор:

Пресметни, о приятелю, броят на говедата в стадото на Бога на Слънцето, които като веднъж пасяха по полетата на Сицилия, бяха разделени по цветове в четири групи като млечно бели, черни, петнисти и кафяви. Знаем, че броят на биковете е по-голям от броя на кравите. Сред биковете броят на белите е половината плюс една трета от броя на черните, плюс броя на кафявите; броят на черните е една четвърт плюс една пета от броя на петнистите, плюс броя на кафявите; и броят на петнистите е една шеста плюс една седма от броя на белите, плюс броя на кафявите. За останалите знаем, че броят на белите крави е една трета плюс една чевтърт от броя на черните говеда; броят на черните крави е една четвърт плюс една пета от броя на петнистите говеда; броят на петнистите крави е една пета плюс една шеста от броя на кафявите говеда; и броят на кафявите говеда е една шеста плюс една седма от броя на белите говеда.

Задача 2. Втората част на същата задача дава конкретно и точно решение. За първи път то е намерено от Х. Уилиамс от Университета във Ватерлоо през 1965г.:

Ще видиш, о приятелю, че решенията на задачата са безброй много. Приеми обаче следните допълнителни условия за стадата на Бога на Слънцето: броят на белите бикове плюс броя на черните бикове е число, което е точен квадрат, както и броят на петнистите бикове плюс броя на кафявите бикове е триъгълно число*. Ако отчетеш и тези условия, о приятелю, и намериш общия брой говеда в стадото на Бога на Слънцето, то ще ликуваш като завоевател, който е доказал себе си като най-опитен в боравенето с числата!

* "Триъгълни" наричаме числата от вида: n(n-1)/2

 



4 коментара


  1. Означавам:
    бели бикове b
    черни бикове c
    кафяви бикове k
    петнисти бикове p
    бели крави B
    черни крави C
    кафяви крави K
    петнисти крави P
    система:
    b+c+k+p>B+C+K+P and b=5*(c+k)/6 and c=9*(p+k)/20 and p=13*(b+k)/42 and B=7*(c+C)/12 and C=9*(p+P)/20 and P=11*(k+K)/30 and k+K=13(b+B)/42
    На такава система wolfram alphata се предава, а на мен не ми се решава :).

  2. Уравненията са ето такива:

    Бели бикове = (1/2+1/3)*черни бикове + кафяви бикове
    ...

    Имаме 7 уравнения и 8 неизвестни, т.е. задачата е диофантова. На първо време трябва да се намерят най-малките цели числа, които са решение. След това може да се намери формула за всички решения.

    Втора задача вече е по-сложна и си иска компютър :)

Добави коментар

Адресът на електронната поща няма да се публикува


*